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In Parts I and II we developed the concept of Brownian motion, which is the source of randomness in equations
that model the evolution of stock price over time. In this part of the series we will develop an equation for stock
price using a branch of mathematics called Stochastic Calculus. Assume that we have a stock with the following
parameters...

Stock price today = $100
Known rate of return on a risk-free asset = 0.06 (compounded monthly)
Expected rate of return on a risky asset = 0.18 (compounded monthly)
Risky asset annual return volatility = 0.30

Question: (1) What is expected stock price in six months time? (2) What is the probability that stock price
will be greater than $125.00?

Risk-Free Asset Prices in Discrete Time

An ordinary differential equation (ODE) defines the change in stock price to be a function of the current stock
price, the periodic rate of return and the length of the time interval over which the change in stock price occurs.
This ordinary differential equation is...

∆St = St µ∆t (1)

In the equation above St represents stock price at time t, µ represents the periodic rate of return and ∆t represents
the length of the time interval over which the change in stock price occurs. Note that µ and ∆t are related in that
µ is the rate of return for an entire period and ∆t is the portion of that time period over which stock price changes.
Also note that per the equation above stock price at any time is known with certainty and therefore the stock will
earn the risk-free rate. An example application might be that we want to calculate the change in stock price over
one month’s time. In this example S0 is $100, µ is 6% and ∆t is one month. Using Equation (1) above the change
in stock price is...

∆St = St µ∆t = $100.00× 0.06× 1

12
= $0.50 (2)

Using the result of Equation (2) above stock price at the end of month one is...

St+∆t = St + ∆St = $100.00 + $0.50 = $100.50 (3)

Stock price at the end of six months is...

∆St+6∆t = St +

6∑
i=1

∆St+i−1 = $103.04 (4)

The table below presents the stock price calculation used in Equation (4) above...

Month Beginning Price Change in Price Ending Price
1 100.00 0.5000 100.50
2 100.50 0.5025 101.00
3 101.00 0.5050 101.51
4 101.51 0.5075 102.02
5 102.02 0.5101 102.53
6 102.53 0.5126 103.04
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We want to find an equation for stock price at any time t where t > 0. If S0 is stock price at time zero, µ
is the periodic rate of return, t is the number of time periods and each time period is divided into n discrete
compounding periods then the equation for stock price at any time t using Equations (1) and (4) above is...

St = S0 +

tn∑
i=1

∆Si−1 = S0 +

tn∑
i=1

Si−1 µ∆t ...where... ∆t =
1

n
(5)

Risk-Free Asset Prices in Continuous Time

With Stochastic Calculus we will be dealing with changes in asset prices over infinitesimally small time periods and
therefore need continuous time versions of the discrete time equations above. The continuous time version of the
ODE in Equation (1) above is...

δSt = St µ δt (6)

Note that when converting from discrete time to continuous time we replace the ∆St and ∆t in Equation (1) with
δSt and δt, respectively. Whereas [∆] represents a change over a relatively large time interval [δ] represents a change
over an infinitesimally small time interval (i.e. near zero). Also note that in discrete time the periodic rate of return
is compounded in discrete time intervals whereas in continuous time the periodic rate of return is compounded
continuously.

We want to find an equation for stock price in continous time using the ODE in Equation (6). This new equation
will be the continous time version of Equation (5) above. When returns are compounded continuously the asset
price path is exponential (i.e. non-linear). We can make the price path linear by using the log of stock price rather
than the actual dollar price. Let’s begin by defining the function F (St) to be the log of stock price at any time t.
Using a second-order Taylor Series Expansion the equation for the change in the log of stock price is...

δF (St) =
δF (St)

δSt
δSt +

1

2

δ2F (St)

δS2
t

δS2
t (7)

The first and second derivatives of our function F (St) are...

F (St) = lnSt ...such that...
δF (St)

δSt
=

1

St
...and...

δ2F (St)

δS2
t

= − 1

S2
t

(8)

Substituting the derivatives of F (St) as defined by Equation (8) into Equation (7) the equation for the change in
the log of stock price becomes...

δF (St) =
1

St
δSt −

1

2

1

S2
t

δS2
t (9)

We will now make substitutions for δSt and δS2
t in Equation (9) above. Given that δSt is defined by Equation (6)

we still need an equation for δS2
t . Using Equation (6) above the equation for δS2

t is...

δS2
t = (St µ δt)

2 = S2
t µ

2 δt2 = 0 (10)

Note that in Equation (10) above δS2
t = 0 because δt2 = 0. The value of the square of an infinitesimally small time

period is zero. After substituting Equations (6) and (10) into Equation (9) the equation for the change in the log
of stock price becomes...

δF (St) =
1

St

(
St µ δt

)
− 1

2

1

S2
t

(
0

)
= µ δt (11)

Using Equation (11) above the equation for the log of stock price at any time t as a function of the log of stock
price at time zero is...

F (St) = F (S0) +

t∫
0

δF (Su) = F (S0) +

t∫
0

µ δu = F (S0) + µ t (12)

Given that stock price is the exponential of the log of stock price as defined by Equation (12) the equation for stock
price at any time t as a function of stock price at time zero is...

St = S0 exp(µ t) (13)
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By taking the first derivative of Equation (13) we get the ODE in Equation (6) above thus proving that Equation
(13) is the solution to the ODE as defined by Equation (6). The proof is...

δSt
δt

=
δS0 e

µt

δt
= µS0 e

µt ...such that... δSt = µS0 e
µtδt = St µ δt (14)

How would we go about solving the problem above? To solve the problem in a continuous time framework we first
convert the monthly compounded return to a continuously compounded return and then use continuous time Equa-
tion (13) to solve the problem. If 6% is the monthly compounded discrete time return and k is the continuous time
equivalent return then the equation that converts the monthly compounded return into a continuously compouned
return is...

ek =

(
1 +

0.06

12

)12

k = ln

{(
1 +

0.06

12

)12}
k = 0.05985 (15)

Stock price at the end of six months using Equation (13) is...

S0.50 = $100.00× exp((0.05985)(0.50)) = $103.04 (16)

The answer to the problem assuming that the stock is risk-free is...

1) Stock price at the end of month six is $103.04
2) Probability that the stock price will be greater than $125 is zero because variance is zero

Introducing Risk Into The Equation

To incorporate risk into the ODE as defined by Equation (6) above we will add an innovation term such that the
ordinary differential equation, which is deterministic in that stock price at some future time t > 0 is known with
certainty at time zero, becomes a stochastic differential equation (SDE), which is a differential equation with a
random component such that from the vantage point of time zero we don’t know stock price at time t > 0 but we
do know the possible paths that stock price may take and the attendant probabilities. The ODE in Equation (6)
rewritten as an SDE is...

δSt = St µ δt+ St σ δWt (17)

The δWt in Equation (17) is the change in an underlying Brownian motion and is the source of randomness (i.e.
uncertainty a.k.a. risk). Remember from Part II that the limiting distribution of a scaled symmetric random walk
as the time step goes to zero is a Brownian motion with mean zero and variance t. The value of a scaled symmetric
random walk at any time t can either increase or decrease by 1√

n
over the time interval [t, t+ 1

n ].

We will define δt to be an infinitesimally small time period of near-zero length. Whereas δt is not insignificant
the square of δt is. We therefore make the following definitions...

lim
n→∞

1

n
= δt ...and... lim

n→∞

(
1

n

)2

= δt2 = 0 (18)

If we define Xt to be the value of a scaled symmetric random walk at time t then the square of the increment in
the Brownian motion over the time interval [t, t+ 1

n ] as n goes to infinity is...

δW 2
t = lim

n→∞

(
Xt+ 1

n
−Xt

)2

= lim
n→∞

(
± 1√

n

)2

= lim
n→∞

1

n
= δt (19)

The square of the change in time over the time interval [t, t+ 1
n ] as n goes to infinity is...

δt2 = lim
n→∞

([
t+

1

n

]
− t
)2

= lim
n→∞

(
1

n

)2

= 0 (20)
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The cross product of the change in the Brownian motion Wt and the change in time as n goes to infinity is...

δXtδt = lim
n→∞

(
Xt+ 1

n
−Xt

)([
t+

1

n

]
− t
)

= lim
n→∞

(
± 1√

n

)(
1

n

)
= 0 (21)

Using Equations (19), (20) and (21) above we will make the following definitions...

δt2 = 0 ...and... δWtδt = 0 ...and... δW 2
t = δt (22)

Risky Asset Prices in Continuous Time

We now have the tools to develop an equation for the evolution of stock price in continuous time where stock price
is a function of a deterministic expected return and an unexpected innovation, which is a function of the underlying
Brownian motion. Recall from Equation (9) above that given the function F (St), which is the log of stock price,
the change in F (St) over the time period δt, which is a time period of infinitesimal length, can be described via the
following second-order Taylor Series Expansion...

δF (St) =
1

St
δSt −

1

2

1

S2
t

δS2
t (23)

Note that when using the ODE from Equation (6) the second derivative in the equation above is zero, which is to
be expected for equations that are not stochastic. Also recall from Equation (17) that the SDE for a risky asset
such as our stock is...

δSt = St µ δt+ St σ δWt (24)

Using the definitions from Equation (22) above the square of Equation (24) is...

δS2
t = (St µ δt+ St σ δWt)

2

= S2
t µ

2 δt2 + 2S2
t µσ δWt δt+ S2

t σ
2δW 2

t

= S2
t σ

2δt (25)

After substituting Equations (24) and (25) into Equation (23) the equation for the change in the log of stock price
over the time interval δt becomes...

δF (St) =
1

St

{
St µ δt+ St σ δWt

}
− 1

2

1

S2
t

{
S2
t σ

2δt

}
= µ δt+ σ δWt −

1

2
σ2δt

=

(
µ− 1

2
σ2

)
δt+ σ δWt (26)

Using Equation (26) above and noting that W0 = 0 the equation for the log of stock price at any time t as a function
of the log of stock price at time zero is...

F (St) = F (S0) +

t∫
0

δF (Su)

= F (S0) +

t∫
0

(
µ− 1

2
σ2

)
δu+

t∫
0

σ δWu

= F (S0) +

(
µ− 1

2
σ2

)
t+ σWt (27)

Given that stock price is the exponential of the log of stock price as defined by Equation (27) the equation for stock
price at any time t as a function of stock price at time zero is...

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
...where... Wt ∼ N

[
0, t

]
(28)

We can normalize Equation (28) such that the equation for stock price at any time t as a function of stock price at
time zero becomes...

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σ

√
t Z

}
...where... Z ∼ N

[
0, σ2t

]
(29)
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Expected Asset Price

We will make the following definitions...

m =

(
µ− 1

2
σ2

)
t ...and... v = σ2 t (30)

Using the definitions in Equation (30) above we can rewrite Equation (29), which is the equation for stock price at
any time t as a function of stock price at time zero, as...

St = S0 exp

{
θ

}
...where... θ ∼ N

[
m, v

]
(31)

Using Equation (31) above the equation for expected stock price at time t is...

E
[
St

]
= E

[
S0 exp

{
θ

}]
=

∞∫
−∞

1√
2π v

exp

{
− 1

2 v

(
θ −m

)2}
S0 exp

{
θ

}
δ θ (32)

Since the exponential of a normally-distributed random variate (θ) is a log-normally distributed random variate it
can be shown that after solving the integral in Equation (32) above the equation for expected stock price at time t
becomes...

E
[
St

]
= S0 exp

{
m+

1

2
v

}
(33)

After substituting Equation (30) into Equation (33) the equation for expected stock price at time t becomes...

E
[
St

]
= S0 exp

{(
µ− 1

2
σ2

)
t+

1

2
σ2 t

}
= S0 exp

{
µ t

}
(34)

The Answer To Our Hypothetical Problem

Since our stock is no longer risk-free (i.e. variance is greater than zero) the stock will earn the risky asset rate
of return and therefore we need to convert the monthly compounded return on the risky asset to a continuously
compounded return as we did in Equation (15) above. The continuous time risky asset rate of return is...

ek =

(
1 +

0.18

12

)12

k = ln

{(
1 +

0.18

12

)12}
k = 0.17866 (35)

Using the equation for expected stock price as defined by Equation (34) above, we will drop in the parameters for
our stock and solve for expected stock price at the end of month six, which is...

E
[
S0.50

]
= $100.00× exp ((0.17866)(0.50)) = $109.34 (36)

We will calculate the probability that stock price will be greater than $125 by first solving for the value of the
Brownian motion such that stock price is equal to $125, which is...

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
125.00 = 100.00× exp

{(
0.17866− 1

2
× 0.302

)
× 0.50 + 0.30×Wt

}
125.00

100.00
= exp

{
0.06685 + 0.30×Wt

}
Wt =

ln( 125.00
100.00 )− 0.06685

0.30
Wt = 0.521 (37)
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Given that the Brownian motion Wt has mean zero and variance t the probability of getting a value for the Brownian
motion greater than 0.521 (and hence a stock price greater than $125.00) is...

Prob[Wt > 0.521] = 1−NORMDIST (0.521, 0, SQRT (0.50), TRUE) = 0.2306 (38)

Note that we used the Excel function NormDist.

Answer: The probability of stock price being greater than $125 in six months is approximately 23%.
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